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Abstract-In the limit of low Reynolds and Peclet numbers the motion of a drop in a solution of surfactant 
consumed on its surface in a chemical reaction is considered when, far off the drop in the outer fluid, there 
is a surfactant concentration and/or tem~raturc gradient. It is shown that the chemical reaction can induce 
changes in the direction of the drop motion under the external concentratjon and~or tem~rature gradient. 
It can also induce multiple steady states of motion, For instance, for a given set of material and Row 
parameters and given external gradients and buoyancy, up to rltree regimes of drop motion may be 
available. Also a single value of the external gradient may stop the drop motion even for multiple (up to 

three) levels of buoyancy. 

1. INTRODUCTION 

DUE TO capillary forces, temperature or concentration 
gradients created in a fluid can drastically influence 
the motion of a drop or a bubble. Although this effect 
can play an important role in many ground-based 
phenomena, its role is expected to be much more 
dramatic in processes under low/microgravity con- 
ditions as in orbital stations, where it can entirely 
determine the motion [I]. 

One of the first studies dealing with this problem 
dates back to Young et al. [2] who, theoretically and 
experimentally, analyzed slow stationary motion of 
bubbles and drops, when a constant temperature 
gradient was applied far off the particle. They showed 
that the external temperature gradient may dynam- 
ically balance buoyancy in such a way that the bubble 
or the drop remains motionless i.e. levitating. The 
analogous problem of the drop motion in a fluid with 
the gradient of surfactant concentration far off the 
drop was analyzed independently by Levich and Kuz- 
netsov [3]. Many analytical (generally in the asymp- 
totic limit of low Reynolds and Peclet numbers), 
numerical and experimental (both for ground and 
space conditions) investigations followed fl]. 

In a previous paper [4] the present authors have 
considered the stationary drop motion in a homo- 
geneous surfactant solution (with constant tem- 
perature and concentration far off the drop). A num- 
ber of specific effects were shown to be a consequence 
of a surface chemical reaction creating a radial con- 
centration profile : (i) if there is buoyancy, whatever 
its value, the chemical reaction could by itself induce 
a change in the direction of drop motion ; (ii) possible 
multiple steady states were identified, e.g. up to three 
velocities of the stationary drop motion for a given 

buoyancy could exist or a drop motion with a given 
value of the velocity could exist for up to three values 
of buoyancy; and (iii) instability of the motion may 
arise. For this reason the drop with chemicai reaction 
is considered as an ‘active’ drop. 

In the present paper we take up the same problem 
with, however, an inhomogenous medium, i.e. we con- 
sider here the effect of temperature and/or surfactant 
concentration gradients. Some results about the effect 
of an externally imposed temperature inhomogenity 
on active drops are available in the literature. For 
instance, ref. [5] refers to the case of a drop with 
uniform internal heat generation affected by a tem- 
perature gradient created far off in the continuous 
phase, and ref. [6] inco~orates a slightly nonunifo~ 
heat generation. modelling radiation absorption. As 
one can anticipate, an obvious effect of the inhomo- 
genity is just a shift of the curve FhC,( v) found in ref. 
[4] (see Figs. 4 and 6) along one or the other axes, Fir<, 
or U. Further, more complex effects are also possible 
as we shall show here in this paper. 

In Section 2 we pose the problem and discuss the 
basic assumptions and their physical relevance. In 
Section 3 the equations and boundary conditions to be 
solved are provided. The solution is found in Section 4 
and its consequences are discussed in Section 5. Sec- 
tion 6 deals with weakly nonlinear analyses around 
instability thresholds to translational motions. 
Finally, Section 7 provides conclusions and a sum- 
mary of results. 

2. STATEMENT OF THE PROBLEM 

The stationary motion of a drop in an inhomo- 
geneous surfactant solution is considered. As in ref. 
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NOMENCLATURE 

A,,, A,,, B,, (n = 0, I. .) expansion coefficients, 
equations (2) and (3) 

A;,, B:, (n = 0, 1. _) expansion coefficients, 
equations (5) and (6) 

u drop radius 

u,, a;, h,,, b& h; (n = 0, 1, .) expansion 

coefficients, equations (46) and (47) 
b (WMp, -P,)~J~~/(~v,O 
c concentration field 

C, concentration far off the drop 
(’ dimensionless concentration field. C/C’, 

(0); co+ Pr L’, in the inner region, 
c(O)+ Pr c”) in the outer region 

cu capillary number, y, V/a, 
D bulk diffusion coefficient 

D, surface diffusion coefficient 
dS drop surface element 

e, radial unit vector 

F< capillary force 
f dimensionless force due to buoyancy and 

external temperature gradient 

;./ .f‘. f 
perturbation off 

II b3. z components of vector fin Cartesian 
coordinates 

.fN(r), K(r) (n = 0, I , . .) auxiliary functions, 
equation (46) 

: 
gravity acceleration 
dimensionless correction to the 
dimensionless half mean curvature 
unity of the spherical surface 

K 3m[2~ + ~(4 - lc)]/2 
K ,!+,,> (n = 0, 1,. .) modified Bessel 

function of third kind and order n + l/2 
k chemical reaction rate 
Ma Marangoni number, (drr/dT)C,, 

(O)+l, v) 
In modified Marangoni number, 

-MuP~/[l2(cr+K) (26+2r+ti)] 
m,,,m., m,, (n = 1, 2,...) critical values ofm 
P coefficient, equation (77) 
Pf Peclet number, uV/D 

P, dimensionless pressure field (i = 1, 2 ; see 
below) 

Y “1 (I + ti) 
radius-vector 

T temperature field (i = 1, 2 ; see below) 

T, temperature far off the drop 
U drop velocity 

U, velocity far off the drop, -U 

u,ll, autonomous motion velocity 

u d”t dimensionless autonomous motion 
velocity 

U aU,:‘D 
U’ perturbation of u 

” I U,iV 

2.4 in %I? 4, dimensionless velocity field 
(i = 1,2 ; see below) 

u,, u,, u; components of vector II in the 
Cartesian coordinates 

V characteristic velocity scale 

X:,JJ,Z Cartesian coordinate system. 

Greek symbols 
cl equilibrium constant between surface 

and bulk concentrations 

; 

dimensionless equilibrium constanL, GLI 

)/z/yI, 
I- surfdctant concentration on the drop 

surface 

; dimensionless surfactant concentration, 

rl(uC, (O)), 70 + Pe :’ I 
d DJD 
E(O,C) departure of the drop shape from 

sphericity 

97(Q)? a,, (Rep), 5, (RV) (n = 0, 1, .) 
spherical functions of order n 

K ku’jD 
A 

2, thermal conductivity (i = 1,2; see below) 

3 W&&l v) 

Vi dynamic viscosity (i = 1, 2 ; see below) 

5 O/(V, V 
<, (0,~) spherical functions in the series 

Hfl,(P) = Y? =- I L(ftcp) 
P hit5 
PI density (i = I, 2 ; see below) 
(T surface tension 

UO surface tension for ;’ = yu. 

r, 0, cp spherical coordinates Subscripts 

S, sphere of radius 1 i 1, continuous phase ; 2, drop phase 

S<, sphere of radius a ‘x: value at large distance from the drop 
SC Schmidt number, q,/(p, D) s surface. 

[4] it is assumed that the fluids are Newtonian, incom- play no active role. The concentrations at the surface 
pressible and immiscible. The outer fluid is infinitely and in the adjacent bulk are in equilibrium and pro- 
extended and at rest far away from the drop. The portional to each other. Inertial and viscous effects in 
surfactant is soluble only in the outer fluid and is the surfactant film and Stefan flow are negligible. All 

consumed on the drop surface in a first order iso- the material parameters of the system do not depend 

thermal chemical reaction; the other species, if any, on temperature or concentration except for the sur- 
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face tension which is assumed to vary linearly with 
concentration and temperature thus leading to 
Marangoni stresses [7]. The drop shape is assumed to 
be almost spherical. Reynolds and Peclet numbers are 
low. In the general case, buoyancy may exist. 

When no drop is present, let C,(r) and T,(r) (both 
satisfying the Laplace equation) be the surfactant con- 
centration and temperature profiles, respectively ; r is 
the radius-vector. Then for the approximation of low 
Reynolds and Peclet numbers to be valid, the gradi- 
ents defined by C,(r) and T,(r) must be small enough. 

In the leading approximation in low Peclet number, 
the concentration field C around the drop satisfies the 
Laplace equation. We have 

C(r, 0, rp) = f Qfl (r”+BJr”+ ‘X (2) 
“=O 

where the spherical coordinate system (r, 0, q) has the 
origin in the center of the drop. The radial coordinate 
r is measured in drop radius units, a. The values 0, 
(0. f~) are spherical functions of first kind, of order n 
and of the general form. Note that here all a’, have the 
dimension of concentration. The terms with negative 
powers of r are absent in equation (1) since C,(r, 0, 
q) cannot be singular in the center. In equation (2) it 
has been already taken into account that the sur- 
factant concentration approaches C,(r, 0, 9) at r-+ 
M ; B,> (n = 0, 1.. .) are some constants to be deter- 
mined using the boundary conditions (b.c.) at the 
surface. 

The concentration in the surfactant film I can be 
represented as 

where the drop radius a has been used to make dimen- 
sionless the unknown constants A,* (n = 0, 1. .), The 
spherical functions in equation (3) are the same as in 
(1) and (2) since b.c. 

must be satisfied. Iiere Z is the equilibrium constant, I) 
and D, are the bulk and surface diffusion coefficients, k 
is the chemical reaction rate, A\, is the surface Laplace 
operator. With the exception of the coordinates, all 
quantities have dimensions. The first condition links 
the concentration at the surface to that in the adjacent 
bulk. The second condition represents the mass bal- 
ance : the left hand side (1.h.s.) is due to the diffusional 
flux while the right hand side (r.h.s.) comes from the 
chemical reaction. 

Using equations (l)-(3) in the b.c. yields : 

A, = 
2n+l _.____ 

n(B+l)6+(n+l)E+K’ 

B,, = 
Un-tljn+1)6-K 

n(n+1)6+(n+l)a+h.’ 
(4) 

with 

c( = Ea, 6 = 0,/D, K = ka2/D. 

Thus, the concentration field is defined by equations 
(2).--(4). For the temperature field we similarly obtain 

T,(r, 0, cp) = 2 (fl,(r”fBk/r”+ ‘), 
fi=” 

T,(r, 0, rp) = f A’,r”@b, 
II=” 

(6) 

where according to b.c. 

r= 1, T, = Tz> awar = aarr,jar, A = k2/,i,, 

one has 

where subscripts i = 1, 2 correspond to the values 
outside and inside the drop, respectively. Symbol T, 
(i = 1, 2) denotes the temperature field and 1, (i = 1, 
2) is the heat conductivity. 

The surface tension ci is assumed to be a linear 
function of temperature and concentration. Thus, on 
the surface the surface tension gradient is 

vdt 44 = $v,r(e, d+gTv,2yr = I, e, rp), 

da da 
z 

= const. rr = const. 

where V, is the surface gradient operator. 
Now to obtain the velocity field we can proceed 

as follows. As the gradients of temperature and/or 
surfactant concentration in the medium finally pro- 
duce V,a on the drop surface, we take this quantity in 
the b.c. and solve the hydrodynamic problem for a 
drop in a nominally homogeneous medium. This leads 
to a hydrodynamic force expressed in terms of V,o. 
Then in the obtained expressions we simply replace 
V,a by the relation giving it as a function of the orig- 
inal gradients in the uctuu~~y inhomogeneous medium. 
Such an approach has been used before by Subra- 
manian [8]. 

We naturally assume that the variation of the con- 
centration field C,(r,@,q) around the drop, on the 
length scale of the drop radius, is negligible with 
respect to the absolute value of the concentration. 
This means that the spherically symmetric component 
of the concentration field (2) which corresponds to 
the mode II = 0, changes faster than the remaining 
nonsymmetrical component (n = 1,2. . .) on the length 



scale of the drop radius, Further, note that just due 
to the symmetry the symmetrical component does not 
contribute to the surface tension gradient (8). and its 
contribution only appears as a result of a convective 
disturbance. 

To adequately describe the influence of the large 
symmetrical component in the general case a first 
order approximation in low Peck% number is needed. 
Note that here we arc interested only in the leading 
order approximation resufts, while derivation of the 
first order approximation for the nonsymmetrical 
component of the concentration field will give only 
small corrections to the result for the surface tension 
gradient (8). However, for the symmetrical com- 
ponent this wifl give just the leading approxi~~ation 
IX%ult. 

Taking into account all the above given details our 
problem is that of a drop moving in a homogeneous 
solution of a reacting surfactant, when on its surface 
some surface tension gradient V,@(f), cp) has been 
induced. For the constant concentration far off the 
drop we shall use c’,(O). i.e. the concentration in the 
outer fluid if there is no drop there, in the place where 
the drop center is located. Finally we shall recall that 
the gradient V,a(tl,yl) is due to the inhomogeneous 
concentration and/or temperature distributions far off 
the drop and employ the expression (8). 

In the general case C,,(O) changes as the drop 
moves. But as one can show, this change proceeds so 
slowly that a stationary (quasistationary) approach 
suffices for our study here. 

The availability of a large spherically symmetrical 
component in the concentration field, which is due 
to the chemical reaction, is the essential difference 
between our work and that of others (for example, 
Subramanian’s [S]). Just owing to the symmetrical 
component qualitatively new effects may appear. The 
same may bc said of the situations studied in refs. [.5, 
61. where a large spherically symmetricat component 
af the temperature field exists. 

3. MATHEMATICAL FORMULATION 

Our first aim is to describe the stationary motion 
of a spherical drop in the homogeneous solution of a 
reacting sur~ctant under buoyancy and in the pres- 
ence of a surface tension gradient V,cr(B,ip) on its 
surface. We shall derive a relationship between U,, g, 
V,~(fl,(p) and the material parameters of the fluids. 
Here U, is the velocity of the flow far off the drop in 
the frame of reference travelling with the drop center 
and g is the acceleration of gravity. 

Clearly, it is enough to consider the leading term of 
the velocity field series in Reynolds number and two 
terms of the concentration field series in Peclet 
number, since the zero order term is spherically sym- 
metrical and the major effect appears only in the first 
order term. 

Let V be a characteristic velocity scale of the 
problem. Choose the other scales: cl-for length, 

q, v/u-for pressure, C, (O)-f’or bulk concentration 
and C,(O)ct-for surface concentration. Then the 
dimensionless equations and b.c. for the velocity. 
pressure and concentration fields can be written as : 

where uirr uju, I+,, pi (i = I, 2) are camponents of the 
dimensionless velocity field and dimensionless hydro- 
dynamic pressure field, respectively ; c, 7 are dimen- 
sionless bulk and surface concentrations ; vi (i = 1, 2) 
are dynamic viscosities; pz (i = 1, 2) are densities ; ytt 
is the constant surface concentration which would 
exist if the fluids are at rest and the concentration at 
infinity is constant and equals C,(O) ; go is the surface 
tension for 7 = y, ; e, is radial unit vector ; and Cu, Pe, 
Ma are the capillary, Peclet and Marangoni numbers. 
respectively. 

Equations (9) and (10) are the Stokes equations for 
the radial component of the velocity field. The angular 
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components are eliminated using the continuity equa- 

tion 

The solution of equations (9)-(15) can be rep- 

resented as 

(i = 1, 2). (22) 

Equation (11) follows from the Stokes equations 
using (22). Equation (17) is the convective diffusion 
equation. Boundary conditions (12) (19) and (13) 
show the behavior of the solution at infinity and in 
the center, respectively. Boundary conditions (14)) 
(16) account for impenetrability, slip and tangental 
stress balance, respectively. In principle, the latter two 
conditions have the form 

x ay 
+%+Mas=O, (23) 

i a~,, au,, 
sin0 aq 
- --- + Yg -Ulq 

+Ls+MaL2=0. (24) 
sm 0 acp sin 0 acp 

Using (sin o))‘(a/%) sin 0 with (23) and (sin 0)-’ 

a/@ with (24), adding the two results and taking into 
account (22) and (14) brings us to (15) and (16). 

The normal stress balance (17) deserves some com- 
ments. The first term in r.h.s. is due to the Laplace 
over-pressure. It is assumed to be large (Cat< 1) which 
is consistent with our assumption of negligible defor- 
mability. The second term is due to the deviation from 

sphericity, where 2h is the dimensionless correction to 
the dimensionless mean curvature 2 of the spherical 
surface (h CC 1). This correction is neglected everywhere 
except for (17) where it is multiplied by a large number 
(Ca is in the denominator). Actually rather than 
Ca<c 1 we shall use a stronger assumption, namely, 
Cacc Pe”, where n is a positive integer. This allows us 

to neglect possible nonsphericity of the drop when 
expanding in a power series of Pe. The value 5 is 
defined such that its average over the surface equals 

zero. Equilibrium between the bulk and surface con- 
centrations and mass balance at the surface result in 
bc. (20) and (21) respectively. 

4. SOLUTION 

The problem (9)(21) is solved in the asymptotic 
limit Pe << 1, MaPe z 1 and Ca K 1 with all other 

dimensionless parameters, independent from the vel- 
ocity scale V and from cr,,, of order unity. Note that 
the number MaPe does not contain the velocity scale 
and only contains material parameters. 

u 2, = ;OL* e,)(r’-1)+ 5 (Ji+‘-J1m’)@n, (26) 
II= I 

(28) 

where p0 is some constant, o,(C), cp) are spherical func- 

tions of the first kind, of order n and of the general 
form. They will be specified after satisfying bc. (16) 

and (17). 
For the concentration problem (18x21) taking 

into account equation (25), the availability of the finite 

velocity flow far off the drop and of the integral sur- 
factant transfer to the drop due to the chemical reac- 

tion is characteristic. Then at Pe<c 1 we shall proceed 

with the help of the matched asymptotic expansions 
method (see, e.g. refs. [9, IO]). Here we just take a 
two-term expansion. The solution is sought in the 
following form in the outer region (r > O(Pe- ‘)) : 

c = ~‘~‘+fec”‘+O(Pe), (29) 

in the inner region (1 < Y < 0( Pe ‘)) : 

c = c,+Pec,+O(Pe), (30) 

on the surface (r = 1) : 

y = y,+Pey,+O(Pe). (31) 

For the outer region the problem (18) and (19), 

using equation (25), can be rewritten as 

II, * grad,c = A,c, (32) 

R-+cxJ, c-1, (33) 

with R = Pe Y and grad, and A, obtained from the 

corresponding differential operators by replacing r by 
R. 

Substituting (29) into (32) and (33) and putting 

together the terms of leading order, one can find that 
the problem for c(O) is just like (32) and (33) for c. Thus 

C’O) = 1 (34) 

is a solution. In fact it is the solution. 
The problem for the inner region can be easily 

derived by substituting (30) and (31) into (18) (20) 
and (21) and collecting the zero order terms : 

AcO=O, r= 1, cr,=ayo, ~A,Y+~-KKY=~. 

With due regard for matching with the outer solu- 
tion (34) we have 
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where 

(35) 

(34) 

q= .” 
lX+ti’ 

Further, substituting (29) and (34) into (32) and 
(33) and putting together the terms of the appropriate 
order one gets the problem for c(l) 

u, *grad,c (1) = ARC’ I), (37) 

R-+x, (l’l-+O. (38) 

Substituting 

L’ (39) 

into (37) (38) and taking into account that grad, 

[R(u jr, me,)] = u, brings us to 

(A,- :]u,,l *)?(I) = 0, (40) 

R-+ cc, 3”-+O. (41) 

The solution of (40), (41) can be easily found. Then 
in view of (39) one has 

where K ,?+ ,s2 are modified Bessel functions of the third 
kind and order n+ l/2, Z,, are spherical functions of 
the first kind, of order IZ and of the general form. 
Using the condition of c(“)+ Pe c”’ matching c,, and 
taking into account (34). (35), (42) brings us to Z,,(@, 
cp) = 0 for n = 1, 2.. . and thus to 

(,(‘I= -rexp 
R 1 

f: Ku7 * e,)- lkll 
I 
. (43) 

The problem for c, and y, can be derived by sub- 
stituting (30), (31), (35) and (36) into (IS), (20) and 
(21) and collecting all the terms of first order in Pe. 

Finally we get 

AC, = $. (44) 

I= I, c, = a>>,, 

&A,~,+;~$+;+,=o. (45) 

Clearly, at this stage there is no need to know the 
angular components of the velocity field. The solution 
of the problem (44) and (45) with (25) and cO+ Pe ct 
matching ctO’ + Pe cc’), where co, c(O) and c(‘) are defined 
in (34) (35) and (43), is 

(46) 

?I = 2: rr,,O,,((1,q)+~z’, (ui me,). 
,z ? 0 

.f,(r) = h;, + !?’ 
1.‘ 

(47) 

3(4-K) 
(2; =: ~-- ~ ---- -.--- 

4(~+~)(26+2cc+li)’ 
(49) 

h, = 3(41+CN+26K+K’f ~._~~ .~~ __ 
’ 4(x+ti)(2S+2a+~) ’ 

4n(n+l)-K 

4$z+l)a+n(n+ 1)(2n+ 1)~6+n(2n+3)ati+(2nf 1)~’ 

2n(n+lf(a+Ic)[n(n+1)6+(n+l)ff+ti] - 

(n = 1,2...). 

Now substituting (Z-(28). (31) (36), (47)-(50) 
into (16) and (17) and recalling that MaFe z I, WC 
obtain 

[(8-~)m+ I +B](ij- 1)(&-e,) 

+3[3(4-ti)nr+ l+ 1@]fu, se,)-5, = 0, (51) 

@ I = l (P - 1) (9 * 4. (52) 

m-m, + I On = _ n(n+ I) 

m,,, i 2(2n+r)(l+p)c~r 
(n = 2. 3.. .), (53) 

I 
m = -MaPr j5-(a+tij(26+2r+K-)~ (54) 

(2n-l)(l+B)[n(n-l)6+nu+~] 

m, = -G[ri-4n(n- 1)](26+2r+k.) 

(n = 3,4.. .), (55) 

2 
PO = &* (56) 

* N+~n+2-/I 
h = -Ca C -ri(n+--@s, (57) 

‘I = 2 

with the spherical functions 5, (0. 9) defined by 
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Since V&0, cp) is assumed given, all functions 

t,,(O, cp) (n = 1, 2.. .) are also known. The functions 
O,(O, cp) (n = 2, 3.. .) are implicitly defined by equa- 

tion (53). 
Equation (51) gives in the dimensionless form the 

sought relationship between drop velocity, buoyancy 
and the imposed surface tension gradient. Multiply 
the 1.h.s. of (51) by r and apply the gradient. Then 

using 

grad(q* r) = ‘I, grad(u, * r) = II,, 

grad(r t d = $ s Vd dS 
s, 

one can derive 

[(8-K)m+1+~1(p-1)?f+3[3(4-K)m+1+-:B]u,, 

- & VJdS = 0, (58) 

where the integration is made over the entire drop 

surface S, of unit radius. 
The results (52)<56) and (58) complete the cal- 

culation of the radial velocity component and hydro- 

dynamic pressure fields in the Stokes approximation 
and of the concentration field up to order Pe. 

Equation (57) obtained within the assumption 
Cu<c Pe” permits estimation of the possible deviation 

of the drop shape from the spherical one. The equa- 
tion of the drop surface can be written as 

r = 1 +.s(O,cp), (59) 

where ]e(Q, cp)] << 1. In the limit of small departures 
from sphericity we obtain 

h = -E- :AL,~. 

Then using (57) yields 

that together with (59) describes the drop surface. 
Since the drop is incompressible and the center of the 
spherical coordinate system has been chosen to be the 

mass center of the drop, the zero and first modes are 
absent in (60). 

5. DISCUSSION 

Equation (55) provides the sequence of critical 
Marangoni values, m,. Generally, the solution found 

is not valid form lying in certain asymptotically small 
vicinities of m, (n = 3, 4,. .) due to the divergence of 
0, as m -+ m,. If, however, 5, = 0, then equation (53) 
gives that 0, = 0 for m#m,, and 0, is an arbitrary 
spherical function of the order n form = n,. The cor- 
rect consideration of the case Im-m,l << 1 demands 
in general proceeding to a higher order approximation 
in (low) Reynolds and Peclet numbers. In the present 

paper the analysis is limited to the case (m-mm,1 g 1 

(n = 3,4,. . .). 
Rewrite equation (58) in dimensional form as 

a*g 
K8-4m+l+Bl(p2-p0- 

3rll 
1 

+[3(4-ic)m+l+:flU,---- 
s 871~ 1 s, 

V,o dS = 0, 

(61) 

where the integration is done over the sphere S, of 

radius a. 
Equation (61) permits us to express the velocity of 

the drop U (U = -U,) under buoyancy and surface 

tension gradient as 

(8-K-)m+1+/3 (P2--PJa2g 
‘=3(4-ic)m+l++fi 3n, 

1 
~ 

s 87q,[3(4-~)m+1+~81 s,L 
V,ad.S. (62) 

The first contribution to the r.h.s. of equation (62) is 
due to buoyancy, while the second one is the strict 
capillary-induced velocity that, for example, governs 
drop motion in free fall conditions. 

Equation (61) can be rewritten in the following 
form : 

4x 3(4-rc)m+l+$ 
j(P2-PJQ3g+%i” (8_K)m+1+B ux 

1 

s -2[@-~)m+l+Bl S, 
V,a dS = 0. (63) 

Since the first term in the 1.h.s. of equation (63) is 

the buoyancy force, one can conclude that (63) 
accounts for the dynamic balance of the forces acting 
on the drop. The second term is the hydrodynamical 
force in the homogeneous case obtained in ref. [4]. 
The third term gives the (capillary) force acting on the 
drop due to the induced surface tension gradient : 

1 

Fc = -2[(8-rc)m+ 1 +j] s,, s 
V,a dS (64) 

In the particular case m = 0 the second term in (63) 

reduces to the classical result obtained by Rybczynski 
and Hadamard for the drag of a drop (without surface 
tension gradient [l]), while (64) reduces to Subra- 
manian’s result with given albeit arbitrary surface ten- 
sion gradient [8]. 

Let us now use (3) (6) and (8) to obtain V,cr. We 
have 

s s, 
V,a dS = $ 

s s, 
V,l- dS+ ;? 

s 
V,T dS 

S” 

In accordance with the properties of the spherical 
functions, only the function of the first order survives 
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the process of integration. Then using (1) and (5) we 
get 

V@, = VC.(O), VO’, = VT,(O). 

where VC.(O) is the external concentration gradient 

that, when no drop is present, would appear at the 
expected location of the center of the drop. 

Finally taking into account (4) and (7) we get 

+ 90 87& 
dT 2 iJ VT,(O)> (65) 

which can be used in equations (61)-(64). 

In the case ]m] >> I +[I and Iti- z 1 the results 
can be simplified. In particular, the expression for the 

drop velocity under the surfactant gradient alone is 

u = 4D(s(+K) VC,,(O) 

4-K C, (0) 

Note that the main capillary parameter da/dF does 
not appear. Moreover, we also see that for a given 
gradient an increase in the background surfactant 

concentration lowers the velocity. 

Equations (61)-(63) give an incorrect result for the 
velocity if m is in some asymptotically small vicinity 

of nz,, where 

(now, for simplicity, we assume I~-41 ~2 1). Note that 
at m = m, the second term of (61) vanishes and as 
does the denominator in (62). Thus we see that if 
]m -rrr,] << 1 the neglected higher order terms in low 

Reynolds and Peclet numbers, become comparable 

with the second term on the 1.h.s. of (61). We shall 
come back to this case below with the help of a weakly 
nonlinear analysis. At this point we can only say that 
for given buoyancy and surface tension gradient. the 

velocity of the drop is, in the case ]m - m, I << I, much 
larger than for ]m--m,] g 1. If one is interested in 
the relation between the surface tension gradient (or 

concentration gradient far off the drop) and buoyancy 
for a levitating drop, then (61) or (63) at U,, = 0 
give the correct leading approximation result even for 
jm--m,] << 1. 

In the general case if ]m -m,] K I, equations (61) 
(63) give an incorrect result for the buoyancy con- 
tribution to the velocity. where 

(1~ -81 E I is now assumed for simplicity). The reason 
for the incorrectness is very similar to that mentioned 
above for the case ]m - m, 1 << 1. The case Im - m2/ cc 1 
will also be treated below with the help of a weakly 
nonlinear analysis. Now one can only point out that 
when (m -m,j cc 1 then, to influence the drop velocity 

to the same extent as with lrn - m,( z I, the buoyancy 
force must be much larger. If one is intercstcd in the 
drop motion when buoyancy is ncgligiblc. as in free 
fall conditions. then equations (61) and (62) at g = 0 
give the correct result even for ]))I --rz2] cc I. 

The critical Marangoni values M,, (n = I, 2.. .J have 

been shown to be the instability thresholds for the 
corresponding mode of a motionless drop in a homo- 

geneous background and no buoyancy [4]. Here /rr, 
and m2 correspond to the translational mode. rrr, for 

a ,fi.ee drop, while m, is for a /r&r/ drop [4]. In this 
paper we shall deal only with the case of a fiw drop. 

Note that the analysis carried out here is in fact 

linrar since the problem for the velocity field and the 
convective contribution to the concentration held is 
linear in the innrr region. Due to this ‘linearity’, for 
given material parameters the stability status of the 

linear motion regimes, with g#O and V,rr#O, in the 
general case, coincides with that for the motionless 
state of the drop for vanishing g and V,(T. 

6. WEAKLY NONLINEAR ANALYSES 

Using (66) and (67). equation (61) can be rewritten 

Xi 

1 

3(4-K)(m-m,)U. +iX-li)(nl-m,)(pl-p,)::,:: 
I 

I 
_ 

8nar7 / 
V,a dS = 0. (6X) 

In each term of (68) the dimensional factors provide 

natural velocity scales of the problem. The first is 
associated with the drop velocity, the second with the 
buoyancy, while the third with the external gradients. 
By multiplying by UiD, equation (68) can be rewritten 

in terms of Peclet numbers defined by the velocity 
scales. Since the solution for the radial velocity field 
developed above contains terms proportional to each 
one of the velocity scales, in the general case all those 
Peclet numbers are of equal order and small for the 
solution to be valid. The higher order terms in low 

Reynolds and Peclet numbers have been neglected 
since here WC just consider the leading order approxi- 
mation. However, as already pointed out. if the 
coefficients m-m or nz-~77, arc small such a limi- 
tation may not be adequate as higher order terms may 

be of the order of the linear terms in (68). 
Thus to discuss the cases ]rrr -rlr~,] << 1 and 

(nr-rm21<< I some (though not all) higher order con- 
tributions need to be taken into account in (68). In the 
case Im-m,lc I, Im-m21 z 1, it is clear from equation 
(68) that the higher order term to be included must be 
independent from the velocity scales associated to 
buoyancy and gradients. Thus this term depends only 
on U, In the case Im - mZ( cc 1. B similar consideration 
yields that the higher order term to be retained should 
depend on the buoyancy velocity scale rather than on 
the other two scales. 

To proceed we shall take advantage of the rcsults 
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, t l u’ 

2 I 

FIG. I. Velocity vs concentration gradient, given by equa- 
tions (69) and (65) in the absence of buoyancy (curve 1) and 
for nonzero buoyancy (curve 2), when there is no temperature 
gradient and the three vectors involved are collinear; e is a 

collinear unit vector. 

obtained in ref. [4]. Indeed, although the analysis of 
ref. [4] has been carried out for a homogeneous exter- 
nal medium while here there are concentration and/or 
temperature gradients in the outer fluid, this fact does 
not influence the form of the higher order terms of 
interest. 

A. The case jm-m,J CC 1 
In the case Im-m,\<<l, (K-4121, (m-m,lEl 

(n = 2, 3,. .) instead of (68) we have 

+(~-do-m3(p,--pJ~ 
I 

V,odS= 0, (69) 

where the second nonlinear term in the 1.h.s. has been 
taken from ref. [4] (equation (30)). Using (65) the last 
term in the 1.h.s. of (69) can be written in terms of 
temperature and concentration gradients. 

One can easily see that equation (69) can have up 
to three solutions for a given U,. This means that for 
given values of buoyancy and external gradient there 
can exist from one to three stationary regimes of drop 
motion. 

Note that here the external concentration and/or 
temperature gradient enter the problem in the same 
way as buoyancy. The drop velocity versus the exter- 
nal gradient is schematically represented in Fig. 1 when 
multiple steady regimes may exist. Two curves cor- 
responding to no buoyancy and to some nonzero level 
of buoyancy, respectively, are shown. For simplicity, 
Fig. 1 is drawn when there is only a concentration 
gradient and the vectors entering equation (69) are 
collinear (e is a unit vector). It appears that the effect 

of buoyancy is a mere shift of the curve along the 
gradient axis, as expected. 

The relative stability analysis can be carried out 
following the scheme given in ref. [4]. When multiple 
steady states exist, we find that the regimes of drop 
motion with absolute velocity ranging from 0 to 
1 u.J/2 are unstable (respectively, stable), while those 
with velocity greater than IU,,,] are stable (respec- 
tively, unstable). Motions with velocities from ]V,,,(/Z 
to lt7.J are stable (respectively, unstable) in the 
axisymmetrical problem, while unstable (respectively, 
stable) with respect to velocity perturbations per- 
pendicular to the motion. Here ]Uau,l is the drop vel- 
ocity in the autonomous motion [4], i.e. in the absence 
of buoyancy and external gradients 

2(K-4)(m-m,)D 

‘“J = [2K+q(4-K)]ma (70) 

The higher order modes can also bring instability. 
However, if m, is, in absolute value, smaller than all 
m, (n = 3, 4,. .) of the same sign such instability is 
not expected [4]. 

On the basis of (69) one can conclude that when the 
sum of the third and fourth terms on the 1.h.s. is 
zero or small enough, the drop will move with the 
autonomous motion velocity in an arbitrary direction 
in space or at a close velocity. As for the arbitrary 
direction, it is clear that equation (69) gives an incor- 
rect prediction, since the slightest nonzero buoyancy 
and concentration and/or temperature gradient yield 
a definite direction in space. Even as for the absolute 
value of the velocity, the prediction is not always 
correct. Indeed, when the sum of the third and fourth 
terms is much smaller than each of those terms, the 
higher order contributions based on the buoyancy 
and gradient velocity scales must in general be taken 
into account. Indeed, now the Peclet number based 
on the buoyancy velocity scale may be comparable or 
even larger than m-m,, while this is not possible when 
the sum is of order of one of the terms. The next 
subsection is devoted to these specific asymptotics. 

B. The case qf buoyancy alone stronger than the net 

fbrce due to buoyancy andgradients acting together 

We continue consideration of the case Im- m,l CC 

l,I~-4) r l,\m-m,,l z l(n=2,3,...)andnowthe 
buoyancy alone is stronger than a gradient-induced 
force and buoyancy acting together. For simplicity, 
we limit consideration to the action of a temperature 
gradient alone taken to be constant far off the drop. 
The diffusional Peclet number is assumed to be much 
larger than the thermal Peclet number and the Reyn- 
olds number, i.e. Schmidt and Lewis numbers are 
extremely large which is a valid assumption if the fluid 
outside the drop is a liquid. Thus to find the extra 
appropriate nonlinear terms in (69) the expansion is 
only carried in diffusional Peclet number. 

Clearly, the term to be taken into account of the 
1.h.s. of (69) necessarily depends on the buoyancy 
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velocity scale. From the Appendix we get 

After developing the last term of the 1.h.s. of (69) with 
the help of (65) (at VC, = 0) and introducing 

-(8-rc)(m-m_)(p_-P ) a!!? 7 7 
’ 3q, I - 

K= 31,y [2li+q(4-ti)]. 

we obtain 

3(4-K)(m-m,)u+K(uJu+blul = f. (72) 

In the general case all terms must have the same 
order. Then 

]m-m,] z 1111 r Ib( << I, 14 z juljbj. 

Equation (72) shows the possibility of multiple 

stationary drop motions for given buoyancy and tem- 
perature gradient. Note that, in general, the vectors b 
and f are not collinear and the possible velocities of 

the drop are different not only in magnitude, but 
also in direction, unlike the situation considered in 

Subsection A. 
Let us give further consideration to the case when 

b and fare collinear. Instead of (72) we have now 

3(4-K)(rn--m,)u+Klulu+h[ul =.f; (73) 

where U, h,f’are the only nonzero components of the 
corresponding vectors. Take for definiteness ti > 4 

(then m, > 0 according to (66) and K > 0) and 6>0. 
The dependence of,f’on u is schematically depicted in 

Figs. 2(a)-(d). The curve of Fig. 2(a) corresponds to 
m-m, < 0, m, -m >> h. As rn increases, the curve 
looses symmetry and a discontinuity in the slope at 
the center appears. At m = m, -h/[3(ri-4)] 3 M. < 
m, the left derivative vanishes and for m > m. the 
curve is shown in Fig. 2(b). We see that three regimes 
of drop motion exist if,f’is positive and small enough. 

Note that three regimes can already appear for m < 
m,, unlike the situation reported in ref. [4] and in the 
previous subsection where three regimes can exist only 
form > m,. At m = m, +h/[3(ti-4)J = m,. > m, the 
right derivative vanishes and for m > m.. the curve is 
shown in Fig. 2(c). It is still asymmetric, becoming 
symmetric only at m-m >> b (Fig. 2(d)). Note that 
when jm-m,) >> h, the third term of the 1.h.s. of (73) 
becomes negligible and the dependence ,f(u) quali- 
tatively coincides with that considered in the Sub- 
section A. 

For other combinations of signs of (4--K) and h 
there is no qualitative change in the transition 

diagram. It may only happen that instead of the curves 
shown in Fig.2 we may find their mirror images with 
respect to either of the axes. 

Note that according to (72) if 3 (x-4) (nr -m,)/K = 

(u,,,j > 0 and f = b IuJ, where II,,, is the autonomous 
motion velocity (70) in the new scale. the motion at 
this velocity has arbitrary direction in space. Thcre- 
fore, equation (72), just like the simpler equation (69). 
shows the possibility of the temperature gradient com- 
pensating for the action of buoyancy, i.e. that fat 

some given buoyancy and temperature gradient. the 
motion can occur just like the autonomous motion in 
the absence of buoyancy and temperature gradient. 
provided f = blu,,,,,]. Nevcrthcless one should cxpcct 

that this degeneracy, with an intinite number 01 
stationary regimes. dots not survive if the higher order 
contributions are taken into account. 

To assess relative stability of the possible states Ict 
us linearize (72) with respect to a small stationary 

perturbation u’ of the velocity u. Then one gets 

df 
f = 

dU 
‘U’. 

where 

df 

du = 

in a Cartesian coordinate system (x, ~2, z). 
Since f’ = 0 (the forcing factors are not perturbed), 

the condition for the existence of a nontrivial solution 

is 

= 0. (74) 

For simplicity and without a loss of generality we take 

the coordinate system as b = (h, 0. 0), h > 0. After 
calculating the matrix elements with the help of (72). 
equation (74) can be reduced to 

3(4-h-)(,,1-n2,)+2Klu(+h;liJ 1 
1 

2 

3(4-ti)(m-m,)+K]u] = 0 

or 

3(4-K)(m-m,)+2I(u]+h = 0, 
1:; 

(75) 

3(4-tc)(m-m,)+Klul = 0. (76) 

Equations (75) and (76) define two surfaces in 3-d 
space (u,, u,., uZ) and the drop motions with velocities 
lying on these surfaces admit a neutral steady per- 
turbation whose direction u’ can be found by solving 
the system of three equations 
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FIG. 2. The small net force due to large buoyancy and temperature gradient vs velocity in the axisymmetricai 
case in the absence of con~ntration gradient. (a)-(d) correspond to different increasing Marangoni 
numbers, equation (73). The points correspond to the states admitting a neutral monotonic collinear (A,. 

A:) and perpendicular (B,, I$) perturbation of the drop velocity. 

df . “f = 0. 

du ’ 

where equations (75) or (76) are taken into account. 

In particular, one can show that the neutral steady 
perturbations admitted by the basic states with vel- 
ocity satisfying equation (76) can only have directions 
~rpendicular to u. 

As all the surfaces are symmetric with respect to the 
u,-axis, we only need to consider their cross sections 
with, say, the (u,, u,.) plane, as shown schematically in 
Figs. 3 (a)-(e). For illustration we take K > 4 and then 
nr, > 0 and K > 0. The opposite case can be considered 
in just the same manner. Form < m,, equations (75) 
and (76) have no solution. Then, as II? is increased 
above m,, the surface (75) grows from the origin as 
shown in Fig. 3(a). When nz passes through m, the 
acute angle at the origin changes to be obtuse and 
simultaneously the surface described by equation (76) 
appears (Fig. 3(b)). At m = me, the latter surface (76) 
encloses the surface (75) and the obtuse angle reaches 
its maximum value 27r (Fig. 3(c)). Then as m is 
increased above m., the origin is no longer part of the 
surface (75) which becomes smooth (Fig. 3(d)) until it 
reaches convexity everywhere. Finally, at m-m, >>b 
both surfaces center at the origin and belong to 
spheres with radii luautl and h1,,&2, respectively, as 
illustrated in Fig. 3(e). 

As one may guess. for m, -m>>b when equations 

(75) and (76) have no solution the basic drop motion 
is stable. Then as m is increased and the surfaces 
appear. one may expect that the basic motions with 
velocities lying in the region covered by these surfaces 
are unstable. 

Now let us come back to the axisymmetrical case 
(f, b and u parallel). The points A,, A: and B,, B2 
marked on the curves of Fig. 2 correspond to the 
abscissas of the intersection with the u;axis of the 
surfaces described by equations (75) and (76), respec- 
tively. The states with velocities lying between the 
extreme right and extreme left A or B points are 
expected to be unstable and stable otherwise. If there 
are no such points as in Fig. 2(a), all motions are 
expected to be stable. Note that form. < m < m.. the 
curvej(u,) qualitatively looks like the curve shown in 
Fig. 2(b). Nevertheless, one should keep in mind that 
the points B, and B2 appear there only for m > m,. 

Note that there can exist two stable regimes of 
motion (for appropriate ,fl if ma < m < m... At 
m = m.. the point B, passes to the left of A, and there 
can exist only one stable regime. 

In the case Im-m,l<<l, 1~--8/zl, jm-m,lrl, 
]m-m,j s 1 (n = 3. 4. .) instead of (68) we have 
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FIG. 3. The surfaces, given by equations (75) and (76), in the space of possible drop velocities, which 
correspond to motions admitting a neutral monotonic perturbation. The cases (a)-(e) may exist depending 

on the value taken by the Marangoni number m. 
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lm - rn2/ c< 1 are expected to be stable if, for a given set 
of material parameters, the motionless state of the 
drop is stable in the absence of buoyancy and no 
gradient. Then we expect stability when m, is, in absol- 
ute value, smaller than all m,, m, (n = 3,4,. . .) of the 
same sign. 

Finally, if the sum of the first and the fourth terms 
of the 1.h.s. of (77) is much smaller than each of them, 
the additional term may be incorporated as it has been 
done in subsection B. However, such a case does not 
make much sense if our interest is to calculate the drop 
velocity, since in this asymptotic scheme buoyancy has 
a weak influence. 

FIG. 4. Concentration gradient vs buoyancy (gravity), given 
by equations (77) and (as), for a levitating drop (curve I) 
and for a drop moving at some fixed velocity (curve 2), 
when there is no temperature gradient and the three vectors 

involved are collinear: e is a collinear unit vector. 

+ _.---_ __~ 
lOSc(?Z&+I() Q+ is Q}. 

Q= ! 
3m(24 - x) (26 + 2a + K) -1 

66-i-3&+~ 
+%I +P) 

I 

i 

I mSc 

x 
---- -___ 

4 - 61S+3LY+h- [ 
*44-1&c+ 1801- i; Kij 

3 69 - __ Ic2 - - ~_ RK _ ~_____.__ 
28 2X 

and 

where the third nonlinear term of the 1.h.s. ofequation 
(77) has been taken from [4] (equations (27~(29) 
rewritten in vector form, taking into account equation 
(25)). The last term of the 1.h.s. of (77) can be expressed 
using (65). 

On the basis of equation (77) we can say that to 
drive the drop at some velocity, and in particular to 
keep it at rest, a single value of the external gradient 
may balance up to three different levels of buoyancy 
as illustrated in Fig. 4, drawn for simplicity for the 
case when the concentration gradient is alone and the 
vectors entering equation (77) are collinear (e is a unit 
vector). Curve 1 corresponds to a levitating drop, 
while curve 2 corresponds to a moving drop. The 
effect of motion appears as a mere shift of the curve 
along the gradient axis, as expected. 

Note that while in Subsection A it has been found 
that qualitatively buoyancy and the external gradients 
act similarly on the drop motion, here this intluence 
is different : the drop velocity changes monotonously 
with the gradient but nonmonotonously with buoy- 
ancy. 

By analogy with the situation discussed in ref. f4]. 
here the weakly nonlinear regimes considered for 

7. CONCLUSION 

Following Levich and Kuznetsov [3], Young et al. 
(21 and Subramanian [8] we have considered the poss- 
ible motion of a drop under external concentration 
and/or temperature gradients. The novelty of our 
study is the consideration of an active drop, i.e. a drop 
with a chemical reaction on its surface. 

We have found that the behavior of an active drop 
can be largely different from that of a reaction-free 
drop. In the limit, when our active drop becomes 
passive, we appropriately recover results of earlier 
authors and in the iimit of a homogeneous medium 
we recover the results of our previous paper [4]. 

As expected, in the weakly nonlinear approxi- 
mation the simplest effect of an external gradient is a 
mere shift of the curve representing the dependence 
of the buoyancy force versus drop velocity. The shift 
goes along the force-axis (for m+m,), when the action 
of buoyancy is qualitatively analogous to that of the 
gradients, or along the velocity-axis (for m-+mJ, when 
the gradients are equivalent to some additional drop 
velocity. More complex effects have been also found, 
particularly when the net force due to the sim- 
ultaneous action of buoyancy and temperature gradi- 
ent is much smaller than each of them taken sep- 
arately. 

We have shown that the possibility exists of mul- 
tiplicity in the stationary states of the active drop 
motion. On the one hand, for a given set of material 
parameters, buoyancy and external temperature 
and/or concentration gradients, up to three regimes 
of drop motion are available, one or two of them 
being unstable. On the other hand, the same external 
gradients can be appropriate to keep the drop at rest. 
i.e. levitating under any of three different levels of 
buoyancy. Such multiplicity of states is clearly due to 
the chemical reaction and thus using active drops 
could be observed in experiments 
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APPENDIX 

Here we consider the case ]nr - M,( z I (11 = 2, 3,. .) when 
the temperature gradient is constant far off the drop. Then 
with higher order modes c,, = 0 (n = 2. 3.. .) in (53) the 
formulae (25), (26) (46), (47) may be rewritten as 

Liz, = JCU, *e,)(r’-I)+ I(/,-l)(B.e~)(r’--I), (A2) 

*e,)+ :u, (/j- l)($.e,). (A4) 

Equations (A3), (A4) together with (30). (31). (35) (36) 
determine the concentration field. 

Consider the next order terms in the series (30) (3 I). Note 
that for our purpose, on the one hand, it is enough to look 
for just the first order spherical harmonics component of the 
additional terms, and on the other hand. we are interested 
only in the term depending on buoyancy, say on 7, since the 
term depending on u, only has been already taken into 
account in (69). Then. instead of (30). (31) we have 

(‘=(,,,+Pec,+Pe’X(r)n,(o,cp)+ . . . . (A5) 

;‘=i’,,+Pc,i’,+Pc~YR,(C).cp)+... (Ah) 

(here ‘. .’ replaces the omitted terms, Q(0, cp) is a spherical 
function of first order). Substituting (Al), (AS) and (Ah) into 
(18) (21) and using (3% (36) (A3) and (A4) wc can derive 
the following problem for X(r) and Y: 

(A7) 

r + Y’. x + 0 . (AX) 

r= I. X=CtY. 

26YR,+~~,“,l(p-l)(q.e,)+(1X*,-tiY~, =O. 
h iv 

(A9) 

Note that in principle the velocity held is also to be 
developed in series in Pe. As the problem is treated in the 
Stokes approximation, this can only result, firstly, in the 
corrections to the coefficients available in (Al) and (A2), 
and secondly, in the appearance of higher order harmonics. 
Nevertheless, since the velocity at infinity and the buoyancy 
have been entirely taken into account already, in (Al) and 
(A2). there are no corrections to the coefficients. As for the 
higher order harmonics. they can not influence (A7) (A9). 

The solution of (A7)-(A9) is 

0, = (q.e,), (A.10) 

Using (Al), (A2) and (A6) with (36), (A4), (AIO) and (Al2) 
in (16) for simplicity omitting the term A,t, multiplying by 
r and taking gradient brings to 

3(44ti)(nl-f71,)u, +(8-k.)(m--nz2)(p-l))1/3 

+ pe(x - K, !?!C!p ~ I) ,” 
6 

/g = 0 

or in dimensional form to 

3(4-ti)(m-m,)U, +(8-ti)(,,l-,nI)(i,‘--p,)~~~ 
, 

As the first terms of the 1.h.s. of (69) and (A13) coincide. 
the third term of the 1.h.s. of (A13) just gives the result (71). 

To solve the problem for the complete concentration field 
the matching procedure is used (see Section 4 and ref. [4]). 
Nevertheless it is possible to prove that matching cannot 
affect the result of the calculation shown in this Appendix. 
Indeed, since the particular solution of equation (A7) does 
not necessarily contain terms behaving singularly at infinity, 
the influence of the outer region can become apparent only 
through the term of the form r@,,(fI,q) added to the r.h.s. of 
(A 1 I), where @,((l.cp) is a spherical function of first order to 
be determined by the outer solution and depends explicitly 
on buoyancy. Nevertheless, the appearance of such term in 
the Pe2-approximation would mean that the term of order 
Pr in the outer solution depends on the buoyancy 
parameters. This is not the case, as one can see using equa- 
tions (29) (34) and (39). 


